a异或b=a'b+ab'。
a异或b异或c=(a异或b)'c+(a异或b)c'。
其中(a异或b)'为a同或b=a'b'+ab。
原式=(a'b'+ab)c+(a'b+ab')c'。
=a'b'c+abc+a'bc'+ab'c'。
真值表法:采用一种表格来表示逻辑函数的运算关系,其中输入部分列出输入逻辑变量的所有可能组合,输出部分给出相应的输出逻辑变量值。
计算机语言表示法:AND。
在所有参数的逻辑值为真时返回TRUE(真);只要有一个参数的逻辑值为假,则返回FALSE(假)。
语法表示为:AND(Logical1,logical2,…)。参数Logical1,logical2,…为待检验的1~30个逻辑表达式,它们的结论或为TRUE(真)或为FALSE(假)。
参数必须是逻辑值或者包含逻辑值的数组或引用,如果数组或引用内含有文字或空白单元格,则忽略它的值。如果指定的单元格区域内包括非逻辑值,AND将返回错误值“#VALUE!”。
逻辑运算a⊕b⊕c = aVbVc
a同或b同或c =a∧b V b∧c
a⊕b同或c = (a V b)Vc
扩展资料
1、四则混合运算顺序:同级运算时,从左到右依次计算;两级运算时,先算乘除,后算加减。
有括号时,先算括号里面的,再算括号外面的;有多层括号时,先算小括号里的,再算中括号里面的,再算大括号里面的,最后算括号外面的。
2、乘法是加法的简便运算,除法是减法的简便运算。减法与加法互为逆运算,除法与乘法互为逆运算。
几个加数相加,可以任意交换加数的位置;或者先把几个加数相加再和其他的加数相加,它们的和不变。
一个数减去两个数的和,等于从这个数中依次减去和里的每一个加数。
a⊕b⊕c的非化简:
逻辑运算a⊕b⊕c=aVbVc
a同或b同或c=a∧bVb∧c
a⊕b同或c=(aVb)Vc
命题表达式 A⊕B⊕C⊕D 结果为“真”,当且仅当 A、B、C、D 中有奇数个(即 1 个或 3 个)变量的取值为“真”;而至于其中“假命题”的个数,则对结果“无任何影响”。
产生
布尔用数学方法研究逻辑问题,成功地建立了逻辑演算。他用等式表示判断,把推理看作等式的变换。这种变换的有效性不依赖人们对符号的解释,只依赖于符号的组合规律 。这一逻辑理论人们常称它为布尔代数。20世纪30年代,逻辑代数在电路系统上获得应用,随后,由于电子技术与计算机的发展,出现各种复杂的大系统,它们的变换规律也遵守布尔所揭示的规律。
Y =a⊕b⊕c。
Y' =a⊕b⊕c' ----- 这就是Y的反函数,依照定义可一步一步作下去!
布尔代数法:按一定逻辑规律进行运算的代数。与普通代数不同,布尔代数中的变量是二元值的逻辑变量。
真值表法:采用一种表格来表示逻辑函数的运算关系,其中输入部分列出输入逻辑变量的所有可能组合,输出部分给出相应的输出逻辑变量值。
巧用
与其它语言不同,C语言和C++语言(C++支持xor,用法和效果如'^'相同)的异或不用xor,而是用“^”,键入方式为Shift+6。(而其它语言的“^”一般表示乘方)。
若需要交换两个变量的值,除了通常使用的借用中间变量进行交换外,还可以利用异或,仅使用两个变量进行交换。