勾三股四弦五 勾3股4弦5是什么意思

“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出。但只是适应于直角三角形(3角度数为36.8698976 °,53.1301024°,90°)。 中国古代称短的直角边为勾,长的直角边为股,斜边...

“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出。但只是适应于直角三角形(3角度数为36.8698976 °,53.1301024°,90°)。

中国古代称短的直角边为勾,长的直角边为股,斜边为弦。据我国西汉时期算书《周髀算经》记载,约公元前1100年,人们已经知道如果勾是三,股是四,那么弦就是五。

勾三股四弦五直角三角形的内切圆直径为2。故有“勾三股四弦五径二”之说。

外国的勾股定理

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。

公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。

公元前4世纪,希腊数学家欧几里得在《几何原本》(第Ⅰ卷,命题47)中给出一个证明。

1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。

1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。

勾3股4弦5是什么意思

“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出。但只是适应于直角三角形,(3角度数为36.8698976 °,53.1301024°,90°。)

中国古代称短的直角边为勾,长的直角边为股,斜边为弦。据我国西汉时期算书《周髀算经》记载,约公元前1100年,人们已经知道如果勾是三,股是四,那么弦就是五。

在西方,也有“勾三股四弦五”的定理,《周髀算经》比西方早了五百多年,这一定理在西方称为“毕达哥拉斯定理”。

勾三股四弦五直角三角形的内切圆直径为2。故有 “勾三股四弦五径二”之说。

扩展资料:

如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)

三角形面积是任一同底同高之平行四边形面积的一半。

任意一个正方形的面积等于其二边长的乘积。

任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。

证明的思路为:从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。

设△ABC为一直角三角形,其直角为∠CAB。

其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。

画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。

分别连接CF、AD,形成△BCF、△BDA。

∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。

∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。

因为AB=FB,BD=BC,所以△ABD≌△FBC。

因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。

因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。

因此四边形BDLK=BAGF=AB²。

同理可证,四边形CKLE=ACIH=AC²。

把这两个结果相加,AB²+AC²=BD×BK+KL×KC

由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC

由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。

此证明是于欧几里得《几何原本》一书第1.47节所提出的。

勾三股四弦五公式

勾三股四弦五公式:勾^2+股^2=弦^2,即勾股定理:a^+b^2=c^2。勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

640c1e8d4297b.jpg

勾3股4弦5最简单的方法

勾3股4弦5最简单的方法是勾²+股²=弦²,3²+4²=5²。

勾三股四弦五是勾股定理的一个特别的例子,由西周初年的商高提出。但只是适应于直角三角形。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

勾股定律(Pythagorean Theorem)是一个基本的几何定理,最早提出并证明此定理是古希腊的毕达哥拉斯学派(公元前6世纪),在中国最早由商高提出(周朝时期)。勾股定理指直角三角形的两条直角边长(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方,它是数学定理中证明方法最多的定理之一,也是数形结合的纽带之一。

勾股定理1米2米3米是直角吗

不是直角,根据勾股定理得:

1x1+2x2=5

3x3=9

所以,两式不相等,所以不是直角。

1×1 + 2×2 = 5,小于长边的平方(3×3=9),所以它是钝角三角形。

两边平方和小于第三条边的平方:钝角三角形。

两边平方和等于第三条边的平方:直角三角形。

两边平方和大于第三条边的平方:锐角三角形。

三角形的性质

1、在平面上三角形的内角和等于180°(内角和定理)。

2、在平面上三角形的外角和等于360° (外角和定理)。

3、在平面上三角形的外角等于与其不相邻的两个内角之和。

4、一个三角形的三个内角中最少有两个锐角。

5、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

6、三角形任意两边之和大于第三边,任意两边之差小于第三边。

  • 发表于 2023-06-27 10:59:14
  • 阅读 ( 356 )
  • 分类:百态

0 条评论

请先 登录 后评论

你可能感兴趣的文章

相关问题